Leitbetriebe Ökologischer Landbau in Nordrhein-Westfalen

Versuchsführer 2024

- Versuche
- Erhebungen
- Demonstrationsvorhaben

zum Ökologischen Landbau in Nordrhein-Westfalen

Einleitung

Der vorliegende Versuchsführer gibt eine Übersicht zu allen Versuchen, Erhebungen und Demonstrationsvorhaben die für 2024 auf den Leitbetrieben Ökologischer Landbau in NRW geplant oder bereits angelegt sind.

Die Bearbeiter der jeweiligen Versuche sind mit Anschrift und Telefonnummer in den Kopfzeilen genannt, so dass sie für Rückfragen und Diskussionen zur Verfügung stehen. Weitere Informationen zu aktuellen Themen, Terminen für Versuchsbesichtigungen und Fachtagungen im Rahmen des Leitbetriebe-Projektes erhalten Sie an folgenden Stellen:

LANDWIRTSCHAFTSKAMMER NRW

Dr. Claudia Hof-Kautz

Gartenstr. 11

50765 Köln-Auweiler Tel: 0221 - 5340177

E-Mail: claudia.hof-kautz@lw.nrw.de

LANDWIRTSCHAFTSKAMMER NRW

Sebastian Glowacki

Nevinghoff 40 48135 Münster

Tel.: 0251 - 2376476

E-Mail: sebastian.glowacki@lwk.nrw.de

AGRARÖKOLOGIE & ORGANISCHER LANDBAU, INRES, UNIVERSITÄT BONN

Dipl.-Ing. agr. Christoph Stumm

Auf dem Hügel 6 53121 Bonn

Tel.: 02 28 - 73 20 38

E-Mail: leitbetriebe@uni-bonn.de

Die Versuchsergebnisse sowie aktuelle Informationen finden Sie auch auf unserer Homepage unter www.leitbetriebe.oekolandbau.nrw.de

Versuchs- und Demonstrationsvorhaben 2024

Landwirtschaftskammer NRW (LWK)
Universität Bonn, INRES, Agrarökologie & Organischer Landbau (AOL)

>	Standorte und Adressen der Leitbetriebe (AOL)	1
Ge	etreide, Körnerleguminos en und Ölfrüchte	
>	Sortenprüfung Winterweizen (LWK)	3
>	Winterweizen-Sortenmischungen und Composite Cross Populations (CCPs) im ökologischen Anbau (AOL)	
>	Sortenprüfung Wintergerste (LWK)	7
>	Sortenprüfung Ackerbohne (LWK)	8
>	Sortenprüfung Sojabohnen (LWK)	9
Ka	artoffeln	
>	Sortenprüfung Speisekartoffeln (LWK)	10
Dί	üngung	
>	Wirkung organischer Dünger im Ackerbau zu Kartoffeln (LWK)	12
>	Wirkung auf Wintergetreide 2024	
	nach organischer Dünger zu Kartoffeln 2023 (LWK)	13
Fr	ruchtfolge	
>	Organische Düngung in Ackerbaufruchtfolgen unter Bedingungen des Ökologischen Landbaus (LWK)	14
>	Frühjahrsumbruch mit und ohne Pflug (AOL)	
>	Umbruch von Zwischenfrüchten (AOL)	17

Fι	utterbau	
>	Flächenproduktivität von Kuhweiden auf unterschiedlichen Standorten Mitteleuropas (LWK)	18
>	Futterwert von Silagen in Ökobetrieben (LWK)	20
>	Einfluss der Kleegrasnutzung auf die Folgekultur (LWK)	21
>	Klee- und Luzernegrasmischungen im Vergleich (LWK)	23
Τi	erhaltung	
>	Fortführung der Erhebung zum aktuellen Stand der kuhgebundenen Kälberaufzucht (LWK)	26

Standorte und Adressen der Leitbetriebe 2024

Die 30 Leitbetriebe wurden unter den bestehenden, langjährig ökologisch wirtschaftenden Betrieben so ausgewählt, dass möglichst viele in NRW vorkommende Landschaftsräume mit den jeweils regionaltypischen Produktionsschwerpunkten durch einen Betrieb repräsentiert sind.

Umfassende Informationen zu Standort und Produktionsstruktur der Betriebe finden Sie auf der Homepage des Projektes unter www.leitbetriebe.oekolandbau.nrw.de.

Name	Strasse	PLZ Ort	Telefon
Angenend Peter	Mersch 21	48317 Drensteinfurt	02387-763
Blume Paul	Sauerstrasse 19	59505 Bad Sassendorf-Lohne	02921-51340
Bochröder Christoph	Stockheimer Landstrasse 171	52351 Düren	02421-6930121
Bolten Simon	Dam 36	41372 Niederkrüchten	02163-81898
Bredtmann Till	Lüpkesberger Weg 105	42553 Velbert-Neviges	02053-2157
Schmitz Simone	Niederhelsum 1a	47652 Weeze	02837-2050
Finke Max	Op den Booken 5	46325 Borken	02861-600202
Hannen Timo	Lammertzhof	41564 Kaarst	02131-757470
Hansen Jürgen	Kleyen 22	47559 Kronenburg	02826-92327
Kern Wolfgang	Klespe 4	51688 Wipperfürth	02267-80685
Kinkelbur Friedrich	Zum Hopfengarten 2	32429 Minden-Haddenhausen	05734-1611
Kroll-Fiedler Christian	Haarweg 42	59581 Warstein	02902-76706
Künsemöller Henrike	Mühlenhof 11	33790 Halle (Westf.)	05201-7600
Leiders Christoph	Darderhöfe 1	47877 Willich-Anrath	02156-494426
Liedmann Pawliczek	Harpener Hellweg 377	44388 Dortmund	0231-692299
Luhmer Sebastian	Auf dem Langenberg	53343 Wachtberg	0228-9343141
Maaß Andreas	Süthfeld 7	33824 Werther	05203-883003
Mehrens Arne	Bollheimerstrasse	53909 Zülpich-Oberelvenich	02252-950320
Nolte Martin	lm Winkel 14	33178 Borchen	05292-931620
Griemert Arndt	Schloß Wendlinghausen	32694 Dörentrup	05265-7682
Schreiber Vincent	Winnenthaler Strasse 41	46519 Alpen-Veen	02802-6306
Tewes Georg	St. Georgstrasse 25	34439 Willebadessen-Altenheerse	05646-8304
Nemesch Wolfgang	Dorfstrasse 89	32584 Löhne	05732-72848
Vollmer Bernd	Schildstrasse 4	33378 Rheda-Wiedenbrück	05242-377611
Kiskemper Klaus	Buxelstrasse 83	33334 Gütersloh	05241-915131

Sortenprüfung Winterweizen 2024

Fragestellung

Welche Winterweizensorten eignen sich unter den Anbaubedingungen des Ökologischen Landbaus am besten?

Material und Methoden

Einfaktorieller Feldversuch mit vier Wiederholungen, Landessortenversuche (+WP für das BSA) auf insgesamt drei Standorten.

Tab. 1: 22 Winterweizensorten werden an den jeweils folgenden Standorten geprüft: Leitbetrieb Gut Wendlinghausen (Dörentrup), Leitbetrieb Kroll-Fiedler (Warstein-Belecke) und Leitbetrieb Serkshof (Bad Sassendorf)

Nr.	Sorte		Züchter	Belecke	Wendling- hausen	Bad Sassensorf
1	Aristaro	Е	Dottenfelderhof	Х	Х	Х
2	Moschus*	Е	H. Strube	X	X	Х
3	Wendelin*	Е	Secobra Recerches SAS	X	X	Х
4	Granossos*	Е	Dottenfelderhof	X	X	Х
5	Castado*	Е	Dottenfelderhof	X	Х	Х
6	Montalbano	Е	Natursaaten	X	X	Х
7	Exsal	Е	DSV	Х	X	Х
8	Illusion	Α	Natursaaten	Х	X	Х
9	Rübezahl*	Α	Secobra Recerches SAS	Х	X	Х
10	Tillsano	Α	KWS Lochow GmbH, Probsdorfer Saatzucht		X	Х
11	Mandarin	Mandarin Natursaaten, Probsdorfer Saatzucht		Х	X	Х
12	Informer	В	Saatzucht J. Breun, Limagrain	Х	X	Х
13	Knut	В	Sejet Planteforaedling I/S, IB SortenvertriebsGmbH	Х	X	Х
14	SU Fiete	В	W. von Borries-Eckendorf, Saaten Union	Х	X	Х
15	Obiwan	В	Hauptsaaten	Х	Х	Х
16	Brocken	В	IG	Х	X	Х
17	Watzmann	В	IG	Х	Х	Х
18	KWS Keitum	С	KWS Saaten SE	Х	X	Х
19	Revolver	С	Sejet Planteforaedling I/S, RAGT-Saaten	Х	X	Х
20	RGT Dello	С	RAGT	X	X	Х
			Anhangssorten			
21	SU Tarroca	Α	Hauptsaaten	Х		Х
22	Elzana	В	Natursaaten	X		Х

^{*}Verrechnung-/Vergleichssorte

Am Standort Leitbetrieb Gut Wendlinghausen (Dörentrup) erfolgt grundsätzlich zusätzlich eine Wertprüfung für das Bundessortenamt (BSA) mit Winterweizen Ökostämmen zur Zulassung als Öko-Sorte plus Standardsorten zur Verrechnung. Im Herbst 2023 konnte aufgrund des anhaltenden nassen Wetters die Versuche in Wendlinghausen nicht angelegt werden.

Parameter

Nährstoffe im Boden, Feldaufgang, Stand vor/nach Winter, Masseentwicklung, Bodenbedeckungsgrad, Blattstellung, Pflanzengesundheit, Schädlingsbefall, Pflanzenlänge, Lager, Ertrag, Tausendkornmasse, Proteingehalt, Feuchtkleber, Sedimentationswert, Fallzahl, HL-Gewicht

Winterweizen-Sortenmischungen und Composite Cross Populations (CCPs) im ökologischen Anbau

Hintergrund

Die steigende Variabilität der Witterung und die erhöhte Häufigkeit von Extremwetterereignissen im Zuge des Klimawandels stellen bisherige Strategien der Sortenwahl insbesondere bei einjährigen Kulturen zunehmend in Frage. Durch genetische Diversität innerhalb der Art besteht über Kompensationsmechanismen die Möglichkeit, diese hohe Umweltvariabilität abzupuffern, insbesondere durch Sortenmischungen und Populationen. Durch eine genetische Diversifizierung ist zusätzlich aufgrund von Nischen-Komplementarität der Sorten im Durchschnitt eine Produktivitätsgewinn gegenüber den Reinsorten zu erwarten. Derzeit ist allerdings unklar, welche Mischungen und Populationen genau in den jeweiligen Regionen in Frage kämen und wie deren tatsächliche Eigenschaften (Vorteile/Nachteile gegenüber gängigen Sorten) in NRW ausfallen würden. Darüber hinaus stehen für den Ökolandbau in Deutschland neu entwickelte Populationssorten zur Verfügung, die jedoch bislang noch nicht umfassend evaluiert wurden. Diese grundsätzlichen Fragen werden anhand der Modellkultur Winterweizen geprüft, weil dieser auch im Ökologischen Landbau eine der wichtigsten Kultur darstellt. Dabei liegt hier der Schwerpunkt auf Qualitätsweizen.

Versuchsfragestellungen

- 1. Einfacher Sortentest: Welche Populationssorten und Mischungen sind im Mittel den gängigen Sorten unter Ökobedingungen (wenn überhaupt) ebenbürtig/überlegen?
- 2. Welche Sorten bzw. Populationen und Mischungen zeigen die höchste Stabilität der Zieleigenschaften (Ertrag, Qualität)?
- 3. Diversitätsfrage: Sind Mischungen den Komponenten überlegen? Wie hoch soll das Niveau der genetischen Diversität optimal sein (Vergleich Mischungen aus 5 Sorten mit ihren Komponenten, sowie Vergleich einer Mischung aus 3 Populationen mit ihren Einzelpopulationen)?

Versuchsaufbau

Randomisierte Blockanlange mit 4 Wiederholungen, Parzellengröße 3 x 12,50 m.

Parameter

Feldaufgang

Bonitur Blattkrankheiten und Beikräuter (einmal ca. Ende Mai)

Ertrag und Ertragskomponenten (Anzahl ährentragender Halme, Körner je Ähre, TKG, Korn- und Strohertrag)

Qualität: Proteingehalt, Fallzahl, Sedimentationswert

Varianten

- 1) Aristaro (S)
- 2) Moschus (S)
- 3) Thomaro (S)
- 4) Trebelir (S)
- 5) Wendelin (S)
- 6) MS (Mischung Sorten)
- 7) Brandex (P)
- 8) Liocharls (P)
- 9) Ungarn (P)
- 10) MP (Mischung Populationen)

Standorte

Leitbetrieb Bollheim in Zülpich

Leitbetrieb Schanzenhof in Alpen-Veen

Leitbetrieb Haus Holte in Witten

Praxisbetrieb Kück in Windeck

Versuchsbetrieb Wiesengut in Hennef/Sieg

Sortenprüfung Wintergerste 2024

Fragestellung

Welche Wintergerstensorten eignen sich unter den Anbaubedingungen des Ökologischen Landbaus am besten?

Material und Methoden

Einfaktorieller Feldversuch mit vier Wiederholungen, Landessortenversuch auf einem Standort inklusive Wertprüfung (WP) für das Bundessortenamt (BSA) mit derzeit drei Stämmen.

Tab. 1: Geprüfte 13 Wintergerstensorten + 1 Stamm in der WP: Standort Betrieb Lüpschen (Kerpen)

Nr.	Sorte	Sorte Züchter/Vertreiber			
1	KWS Flemming*	KWS Lochow	lang	WP	mz
2	Esprit	DSV	lang	WP	mz
3	SU Midnight	B. Eckendorf/SU	lang	WP	ZZ
4	LBSD 4598 (2.)	Stamm in Öko-WP	lang	WP	ZZ
5	Normandy	Nordic Seeds	kurz	WP	ZZ
6	LBSD 4597 (2.)	Stamm in Öko-WP	kurz	WP	ZZ
7	LBSD 4577 (1.)	Stamm in Öko-WP	kurz	WP	zz
8	KWS Exquise	KWS Lochow	kurz		mz
9	Melia	IG Pflanzenzucht	lang		mz
10	Julia	Deutsche Saatveredelung	lang		mz
11	Winnie	Saatzucht Josef Breun	lang		mz
12	RGT Mela	W. von Borries-Eckendorf	lang		mz
13	Integral	Secorbra	lang		mz
14	Adalina	Natursaaten	lang		mz
15	Lioba	Dottenfelderhof	lang		mz
16	90998	Rand für lange Sorten (Flemming)	lang		mz
17	90999	Rand für lange Sorten (Flemming)	lang		mz
18	90111	Rand für kurze Sorten (Normandy)	kurz		zz
19	90112	Rand für kurze Sorten (Normandy)	kurz		zz

^{*}Verrechnungssorten

Parameter

Nährstoffe im Boden, Feldaufgang, Stand vor/nach Winter, Masseentwicklung, Bodenbedeckungsgrad, Blattstellung, Pflanzengesundheit, Schädlingsbefall, Pflanzenlänge, Lager, Ertrag, Tausendkornmasse, Proteingehalt, Feuchtkleber, Sedimentationswert, Fallzahl, HL-Gewicht

Sortenprüfung Ackerbohnen 2024

Fragestellung

Welche Ackerbohnensorten eignen sich unter den Anbaubedingungen des Ökologischen Landbaus am besten?

Material und Methoden

Einfaktorieller Feldversuch mit vier Wiederholungen, Landessortenversuche am Standort GBZ Ökologischer Landbau Köln-Auweiler mit 12 zu prüfenden Sorten.

Tab. 1: Geprüfte Ackerbohnensorten: Standort GBZ Ökologischer Landbau Köln-Auweiler

Nr.	Sorte	Inhaltstoffe	Züchter/Vertreiber
1	Tiffany*	TH**, Co/Vic**	NPZ/SU
2	Trumpet*	TH**	NPZ/SU
3	Stella	TH**	Petersen/Saatenunion
4	Caprice	TH**	Hauptsaaten
5	Protine	TH**	Petersen/Saatenunion
6	Iron	TH**, vicinarm	NPZ/SU
7	Genius	TH**	NPZ
8	Futura	TH**, vicinarm	NPZ/Saatenunion
9	Callas	Co/Vic**	Petersen/Saatenunion
10	Hammer	Co/Vic**	Saatenunion
11	LG Igel	TH**	Limagrain/Saatenunion
12	Mystic	Co/Vic**	Petersen/Hauptsaaten
	*Verrechnungssorten	**TH=taninhaltig, Co/Vic=convicin/vincinarm	

Parameter

Nmin, Standard, Feldaufgang, Mängel im Stand nach Aufgang, Bodenbedeckungsgrad, Massenbildung/Jugendentwicklung, Wuchslänge, Krankheiten, Schädlinge, Lager nach Blüte, Lager vor Ernte, Ertrag, N-Gehalt, TKG

Sortenprüfung Sojabohnen 2024

Fragestellung

Welche Sojabohnesorten eignen sich unter den Anbaubedingungen des Ökologischen Landbaus am besten?

Material und Methoden

Einfaktorieller Feldversuch mit vier Wiederholungen, Landessortenversuche am Standort GBZ Köln-Auweiler mit 18 Sorten.

Tab. 1: Geprüfte Sojabohnensorten: Standort GBZ Köln-Auweiler

Nr.	Sorte	Reifezeit	Züchter/Vertreiber
1	Merlin*	000/2	Saatbau Linz
2	Paprika	000/2	ACW/DSP
3	Stepa	000/2	RAGT
4	Agneta	000/2	Saatzucht Donau
5	Arieta	000/2	Saatzucht Donau
6	Todeka	000/3	Taifun
7	Akuma	000/3	Saatzucht Donau
8	Royka	000/3	Hauptsaaten
9	Noa	Noa 000/3 Saatzucht Gleisdorf	
10	Vineta PZO	000/3	PZO Pflanzzucht Oberlimburg
11	ES Comandor*	000/3-4	Euralis
12	Asterix	000/3-4	Farmsaat
13	Ranger	000/4	Petersen Saatzucht Lundsgaard
14	Proteline	000/4	Interzucht
15	Alicia	000/4	Probsdorfer Saatzucht
16	Arnold	000/4	Petersen Saatzucht/Lundsgaard/Saatenunion
17	ES Collector	000/4	Lideaseeds
18	Atlanta	000/4	Ackermann Saatzucht/Saatenunion
	*Verrechnungssorten		

Parameter

Folgende Parameter sollten untersucht werden: Pflanzenentwicklung, -gesundheit, Schädlingsbefall, Nährstoffversorgung, Abreife, Lager, Hülsenansatz, Ertrag, TKM, Proteingehalt.

Sortenprüfung Speisekartoffeln 2024

Fragestellung

Welche Speisekartoffelsorten eignen sich unter den Anbaubedingungen des Ökologischen Landbaus am besten?

Material und Methoden

Einfaktorieller Feldversuch mit vier Wiederholungen, Landessortenversuche auf zwei Standorten mit jeweils 32 Sorten in zwei Blockanlagen aufgeteilt (sf/f und mf).

Tab. 1: Geprüfte Kartoffelsorten am Standort Stautenhof in Willich-Anrath

Nr.	Sorte	Knollenform	Züchter	Reifegruppe	Kochtyp
1	Adorata	langoval	Norika	sf	f
2	Lea*	langoval	Solana	sf	f
3	Sunny	oval-langoval	HZPC	sf	f
4	Belana***	oval	Europlant	f	f
5	Vindika**	langoval	Europlant	f	f
6	Mikado	oval	Danespo/NSP	sf	vf
7	Franca	oval	Europlant	f	vf
8	Filipa	oval	Europlant	sf	vf
9	Melissa	oval	Europlant	sf-f	vf
10	Jutta		Bavaria Saat	sf	vf
11	Nösling	langoval	NÖS	f	vf
12	Marion	oval	Europlant	f	f
13	Allians***	langoval	Europlant	mf	f
14	Simonetta*	langoval	Europlant	mf	f
15	Emanuelle*	langoval	HZPC	mf	f
16	Taormina**	oval	Europlant	mf	vf
17	Peter Pan	langoval	Jan-Eric Geersing NL	mf	f
18	Sound	langoval	Meijer Potato	mf	vf
19	Nola	langoval	Solana/Den Hartigh	f-mf	vf
20	Thalia	oval	Agrico/Weuthen	mf	f
21	Herbstgold	oval	NÖS at	mf	vf
22	Ayla	oval-langoval	Norika	ms	vf-(m)
23	Samoa	oval-langoval	Norika	mf	f
24	Polly	langoval	Norika	mf	m
25	Nena	oval	Danespo	mf	m
26	Belmira	oval	Danespo	mf	f-∨f
27	Larissa	oval	Europlant	f-mf	vf
28	Santera	oval-langoval	Danespo	mf	f
29	Lady Jane	langoval	Weuthen/Meijer	mf	Pommes/m
30	Lunarossa		Danespo	mf	vf
31	Sandra	langoval	Bavaria Saat	mf	vf
32	Nemo	oval	Fobek NL	mf	vf

^{*}Standardsorte

^{**}Vergleichssorte

^{***}Leitbetriebssorte

Tab. 2: Geprüfte Kartoffelsorten am Standort Vollmer in Rheda-Wiedenbrück

Nr.	Sorte	Knollenform	Züchter	Reifegruppe	Kochtyp
1	Adorata	langoval	Norika	sf	f
2	Lea*	langoval	Solana	sf	f
3	Sunny	oval-langoval	HZPC	sf	f
4	Belana***	oval	Europlant	f	f
5	Vindika**	langoval	Europlant	f	f
6	Mikado	oval	Danespo/NSP	sf	vf
7	Franca	oval	Europlant	f	vf
8	Filipa	oval	Europlant	sf	vf
9	Melissa	oval	Europlant	sf-f	vf
10	Geraldine	oval	Europlant	sf	vf
11	Ally		Danespo	f	vf
12	Marion	oval	Europlant	f	f
13	Allians***	langoval	Europlant	mf	f
14	Simonetta*	langoval	Europlant	mf	f
15	Emanuelle*	langoval	HZPC	mf	f
16	Taormina**	oval	Europlant	mf	vf
17	Peter Pan	langoval	Jan-Eric Geersing NL	mf	f
18	Sound	langoval	Meijer Potato	mf	vf
19	Nola	langoval	Solana/Den Hartigh	f-mf	vf
20	Thalia	oval	Agrico/Weuthen	mf	f
21	Herbstgold	oval	NÖS at	mf	vf
22	Ayla	oval-langoval	Norika	ms	vf-(m)
23	Samoa	oval-langoval	Norika	mf	f
24	Polly	langoval	Norika	mf	m
25	Nena	oval	Danespo	mf	m
26	Belmira	oval	Danespo	mf	f-∨f
27	Larissa	oval	Europlant	f-mf	vf
28	Santera	oval-langoval	Danespo	mf	f
29	Lady Jane	langoval	Weuthen/Meijer	mf	Pommes/m
30	Elata	oval	Geersing NL	f	vf
31	Melia		ForKa	mf	m
32	ERA 13-1422	oval	Plantera	f-mf	f

^{*}Standardsorte

Parameter

Pflanzenentwicklung, -gesundheit, Abreife, Ertrag, Sortierung, Stärkegehalt, Knollengesundheit, Geschmack

^{**}Vergleichssorte

^{***}Leitbetriebssorte

Wirkung organischer Dünger im Ackerbau zu Kartoffeln

Fragestellung

Es kommen immer mehr organische Dünger in die Betriebe. Insbesondere viehlose/ viehschwache Betriebe führen externe Dünger zu. Dabei handelt es sich i.d.R. im Mehrnährstoffdünger. Bei ausschließlicher Beachtung von Stickstoff in der Düngeplanung werden andere Nährstoffe (P, K, S, Spurenelemente) vernachlässigt, so dass diese entweder zu wenig, meist jedoch sogar zu viel zugeführt werden. Es sollen die organischen Dünger hinsichtlich Ertragswirkung und N-Verluste (Nmin) getestet werden. Insbesondere geht es in 2024 um einen Steigerungsversuch und die Frage: Wo landet der Stickstoff bei leichten oder schwereren Böden? Hinzu kommt die Frage nach der Wirkung von Terra Preta als langfristiger Bodenverbesserer?

Material und Methoden

Der Versuch wird als vollständig randomisierte, einfaktorielle Blockanlage mit vier Wiederholungen auf zwei Standorten angelegt (GBZ Ökologischer Landbau Köln-Auweiler sowie Leitbetrieb Kiebitzhof, Wertkreis Gütersloh gGmbH in Gütersloh) Als Modellkultur wird Kartoffeln Sorte Allians mit 0,75 x 0,33 m gepflanzt.

Tab. 1: Geprüfte Düngungsvarianten

Nr.	VAR	Variante
1	К	ohne / Kontrolle
2	Т	TerraPreta
3	H50	Haarmehlpellets 50kgN/ha
4	H100	Haarmehlpellets 100kgN/ha
5	H150	Haarmehlpellets 150kgN/ha
6	H50+T	Haarmehlpellets 50kgN/ha
7	H100+T	Haarmehlpellets 100kgN/ha
8	H150+T	Haarmehlpellets 150kgN/ha
9	G50	Gärsubstrate Biogasanlage flüssig 50kg N/ha
10	G100	Gärsubstrat Biogas flüssig 100kgN/ha
11	G150	Gärsubstrat Biogas flüssig 150kgN/ha

Parameter

Nmin-Gehalt im Frühjahr, Standard, Nmin-Gehalte im Mai & September, Knollenertrag, N-Gehalt in der Knolle

Wirkung auf Wintergetreide 2024 nach organischer Dünger zu Kartoffeln 2023

Fragestellung

Es kommen immer mehr organische Dünger in die Betriebe. Insbesondere viehlose / viehschwache Betriebe führen externe Dünger zu. Dabei handelt es sich i.d.R. im Mehrnährstoffdünger. Bei ausschließlicher Beachtung von Stickstoff in der Düngeplanung werden andere Nährstoffe (P, K, S, Spurenelemente) vernachlässigt, so dass diese entweder zu wenig, meist jedoch sogar zu viel zugeführt werden. Es sollen die organischen Dünger hinsichtlich Ertragswirkung und N-Verluste (Nmin) getestet werden. Dabei werden Dünger von Betrieben organisiert und diese auf ihre Inhaltsstoffe untersucht und auf zwei Leitbetrieben in Versuchen ausgebraucht. Insbesondere geht es in 2024 um einen Steigerungsversuch und die Frage: Wo landet der Stickstoff bei leichten oder schwereren Böden? Und wirkt der ausgebrachte Dünger zu Kartoffeln auch noch in der Nachfrucht Wintergetreide?

Material und Methoden

Der Versuch wurde 2023 als vollständig randomisierte, einfaktorielle Blockanlage mit vier Wiederholungen auf zwei Standorten angelegt (GBZ Ökologischer Landbau Köln-Auweiler sowie Leitbetrieb Kiebitzhof, Wertkreis Gütersloh gGmbH in Gütersloh). Als Modellkultur wurde Kartoffeln Sorte Allians mit 0,75 x 0,33 m gepflanzt. In 2024 wird nun die Nachfruchtwirkung auf den Winterweizen (GBZ Auweiler) bzw. Winterroggen (Kiebitzhof) ohne weitere Düngung untersucht.

Tab. 1: Geprüfte Düngungsvarianten in 2023

Nr.	VAR	Variante
1	K	ohne / Kontrolle
2	T	Terrapreta
3	H50	Haarmehlpellets 50 kgN/ha
4	H100	Haarmehlpellets 100 kgN/ha
5	H150	Haarmehlpellets 150 kgN/ha
6	H50+T	Haarmehlpellets 50 kgN/ha
7	H100+T	Haarmehlpellets 100 kgN/ha
8	H150+T	Haarmehlpellets 150 kgN/ha
9	G50	Gärsubstrate flüssig 50 kgN/ha
10	G100	Gärsubstrat flüssig 100 kgN/ha
11	G150	Gärsubstrat flüssig 150 kgN/ha

Parameter

Nmin-Gehalt zu 2-3 Terminen, Getreidekornertrag, Proteingehalte im Wintergetreide

Organische Düngung in Ackerbaufruchtfolgen unter Bedingungen des Ökologischen Landbaus 2023

Fragestellung

In 2020 wurde ein neuer Versuch zur organischen Düngung in Ackerbaufruchtfolgen in Köln-Auweiler angelegt. Dabei soll untersucht werden, wie humus- & nährstoffarme Böden wieder in einen guten Zustand zu bringen sind. Die Untersuchungen dienen dazu, Konzepte für viehlose/vieharme Betriebe hinsichtlich des Nährstoffmanagements zu finden. Diese Konzepte können aber auch für langjährig ökologisch wirtschaftende Betriebe mit wenig Nährstoff-Rückführung interessant sein. Ziel ist die Optimierung der Erträge unter Nutzung der im Ökolandbau verfügbarer Mittel: Das sind v.a. zum einen eine angepasste Fruchtfolge und zum andern der Einsatz vorhandener organische Dünger. Hierbei soll der Schwerpunkt auf die Nährstoffe C (also Humusaufbau), N und P gelegt werden.

Material und Methoden

Ende 2020 wurde ein zweifaktorieller Dauerfeldversuch im Gartenbauzentrum (GBZ) Köln-Auweiler (Zentrum für Ökologischen Landbau Köln-Auweiler) angelegt und über zwei Fruchtfolgen (Faktor 1) für 7 Jahre geplant. Dabei kommen 8 Düngungsvarinaten (Faktor 2) zum Einsatz (Tab. 1, Tab. 2). Im Jahr 2023 wird in Fruchtfolge 1 Körnermais ausgesät. In Fruchtfolge 2 steht Winterrogen mit Weißklee-Weidelgras-Gemenge in abwechselnden Reihen gleichzeitig im Herbst 2022 ausgesät.

Tab. 1: Fruchtfolge 1 und die Düngungsvarianten in den Jahren ab 2020 (1. Jahr)

			1	2	2	3	,	4	1	5	5	(6	7	7			8	
FFF	Auweiler 1	Grund- dünger	Kontrolle (oD)	Haarı pell		Biog subs	•	н	ΓK	Grüns kom	chnitt- post		bfall- post	Rine mi			gas- strat	1-	ioabfall- npost
	Angaben je ha	kgN		t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN
1	Kleegras (anwelken, abfahren, als Bio- gasgülle auf andere Kulturen)	-250								15	140								
2	Sommerweizen	50	-	0,2	30	6	30	1,2	30							3,0	15,0		
3	LBG Zfr. Körnermais	50		0,9	120	24	120	4,7	120			9,5	93,3	16.7	93,3	12,0	60.0	4,8	46,7
•	US Gras (Rotschwingel)	30	-	13,3	120	1	120	2,6	120			1,0	30,0	0,6	30,0	0,5	00,0	1,0	40,7
4	Ackerbohne																		
5	Winterweizen	50	-	0,2	30	6	30	1,2	30							3,0	15,0		
	Weißklee bis Sept + Ölrettich ZF									15	140								
6	Kartoffeln	50		0,4	50	10	50	2,0	50			9,5	93,3	16,7	93,3	5,0	25,0	4,8	46,7
7	Dinkel	50	-	0,4	50	10	50	2,0	50			9,5	93,3	16,7	93,3	5,0	25,0	4,8	46,7
	Kleegras als Untersaat																		
		0			280		280		280		280		280		280		140		140

Tab. 2: Fruchtfolge 2 und die Düngungsvarianten in den Jahren ab 2020 (1. Jahr)

			1	2	2	3	3	4	1		5	(3		7			8	
FFF	Auweiler 2	Grund- dünger	Kontrolle (oD)	Haarı pell		- Biogas- substrat		нтк		Grünschnitt- kompost		Bioabfall- kompost				Biogas- substrat		plus Bioabfall- Kompost	
	Angaben je ha	kgN		t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN	t FM	kgN
1	Raps (Doppelreihe)		-	0,8	100	20	100	4,0	100	15	140	9,5	93,3	16,7	93,3	10,0	50,0	4,8	46,7
	US Sommerwicke (Doppelreihe)																		
	ZF Welsches Weidelgras																		
2	Sommerweizen		-	0,2	25	5	25	1,0	25							2,5	12,5		
3	Winterroggen/Dt. Weidelgras + Weißklee (Doppelreihen)		-																
4	Hafer																		
	LBG ZF (Winterwicke, Phacelia)									15	140								
5	Körnermais		-	0,6	75	15	75	2,9	75			9,5	93,3	16,7	93,3	7,5	37,5	4,8	46,7
	US Welsches Weidelgras																		
6	Kartoffeln		-	0,4	50	10	50	2,0	50			9,5	93,3	16,7	93,3	5,0	25,0	4,8	46,7
	Grünroggen																		
7	Sommergerste		-	0,2	30	6	30	1,2	30							3,0	15,0		
					280		280		280		280		280		280		140		140

Parameter

Pflanzenaufwuchs und Ertrag; Inhaltsstoffe in den Ernteproben (v.a. N, P); Bodenprobenahme (Grundnährstoffe Standard: pH-Wert, Humus, N, P2O5, K2O, Mg Nmin, Smin; Gesamtgehalte an Grundnährstoffen N, P, K, C-org-C, S in Oberboden 0-30 und Unterboden 30-60 cm; elektromagnetischer Bodenscanner; ggf. Bodenzylinder ausstechen); optische Bonitur (Drohnenüberflüge)

Frühjahrsumbruch mit und ohne Pflug

In Anlehnung an den im bundesweiten Projekt NutriNet entwickelten "Netzwerk-versuch" wird auf mehreren Leitbetrieben in Teilschlagbewirtschaftung der Frühjahrs-umbruch zu Sommergetreide bzw. Mais mit und ohne Pflug getestet, um die Wirkung auf Bodengefüge, Nährstoffverfügbarkeit und Ertragsleistung zu ermitteln. Dabei werden die Standorte als zusätzliche Wiederholungen genutzt und gemeinsam ausgewertet.

Varianten

Streifenanlage mit zwei Wiederholungen je Standort

- 1. Pflug
- 2. pfluglos

Standorte

Sommergetreide

Leitbetrieb Lammertzhof in Neuss (2 Versuche)

Leitbetrieb Serkshof in Bad Sassendorf

Kartoffeln

Leitbetrieb Lammertzhof in Neuss

Leitbetrieb Serkshof in Bad Sassendorf

Leitbetrieb Haus Holte in Witten

Umbruch von Zwischenfrüchten

Im Herbst 2022 wurden auf drei ökologisch bewirtschafteten Flächen in NRW Versuche angelegt um zu überprüfen, ob durch unterschiedliche Bearbeitungsverfahren und -zeitpunkte eine zielgerichtete Mineralisierung für die Nachfrucht im Frühjahr erreicht werden kann. Dazu wurde bereits verfügbaren Verfahren wie Messerund Cambridgewalze und Scheibenegge mit einem neu entwickelten Häufelgerät verglichen. Durch dieses neue Dammumbruchverfahren, bei dem der Boden nur auf 30 von 100 cm bearbeitet wird, soll die Sprossmasse durch Verschütten vor Frosteinwirkung geschützt und durch das fehlende Vermischen mit Erde gleichzeitig bei Temperaturen über 5°C, wie sie im Rheinland auch im Winter häufiger vorkommen, vor dem Abbau durch Mikroorganismen bewahrt werden. Erst im Frühjahr soll nach der Einebnung der Dämme mit der Scheibenegge die Mineralisierung zeitgerecht zur Nachfrucht einsetzen.

Varianten

- 1. Scheibenegge (November)
- 2. Messerwalze (November) nur Standort Blume
- 3. Messerwalze (November) plus Scheibenegge (ca. Januar) nur Standort Blume
- 4. Walze (November)
- 5. Walze (November) plus Scheibenegge (ca. Januar)
- 6. ZF unbearbeitet (November)
- 7. ZF unbearbeitet (November) plus Scheibenegge (ca. Januar)
- 8. Treffler Umbruch zu Dämmen (November)

Standorte

Leitbetrieb Angenendt in Drensteinfurt

Versuchsbetrieb Wiesengut in Hennef/Sieg

Flächenproduktivität von Kuhweiden auf unterschiedlichen Standorten Mitteleuropas:

Weiterführung der Untersuchungen seit 2014

Einleitung

Weidehaltung von Milchkühen ist in Forschung und Beratung viele Jahre vernachlässigt worden, stand doch die ganzjährige Stallhaltung sehr im Fokus der "modernen" Milchviehhaltung. Aber gerade im ökologischen und auch zunehmend im konventionellen Landbau kommt der Weide unter den Gesichtspunkten des Tierwohls und der steigenden Energiekosten wieder mehr Bedeutung zu.

Zielsetzung und Fragestellung

Ziel der Untersuchung ist es, einen Überblick über Weidebedingungen auf unterschiedlichen Öko-Milchviehbetrieben zu bekommen. Fragen dabei:

- 1. Wann erfolgt der Auf- und Abtrieb und wie lange ist die Weidedauer?
- 2. Welche Flächenproduktivität wird erzielt und wie verteilt sie sich über die Weideperiode?
- 3. Welchen Einfluss hat die Wuchshöhe auf die Flächenproduktivität?
- 4. Für wie viele Kühe kann die Weide den Futterbedarf von Milchkühen abdecken?
- 5. Ist nach längeren Trockenperioden im Spätsommer/Herbst noch mit nennenswerter Flächenproduktivität zurechnen?

Material und Methoden

Um einen breiten Überblick über mögliche Weidebedingungen zu bekommen, werden wöchentlich die einzelbetrieblichen Daten von Betrieben in unterschiedlichen Regionen erhoben.

Berechnung Flächenproduktivität Kuhweiden (kg ECM/ha): nach anteiliger Zuordnung der Energiezufuhr: Milch aus Weide = Gesamtmilch x Energieanteil aus Weide in der Ration.

Parameter

Festgehalten werden: Viehbesatz, mittlere Laktationstage, Niederschlagsmenge (Betrieb oder nächste DWD-Wetterstation), ermolkene Milch, Milchinhaltsstoffe (Fett-, Eiweiß-, Harnstoff- und Zellgehalt), Weidefläche, Wuchshöhe (Messung ohne Weiderest), Zufütterung (unterteilt in einzelne Futterkomponenten oder Prozent von der Winterfütterung).

Standorte

35 Betriebe, teils in Niederungen, teils im Mittelgebirge

Literatur

Leisen E., Spiekers H., Diepolder M. (2013b): Notwendige Änderungen der Methode zur Berechnung der Flächenleistung (kg Milch/ha und Jahr) von Grünland- und Ackerfutterflächen mit Schnitt- oder Weidenutzung. Arbeitsgemeinschaft Grünland und Futterbau in der Gesellschaft für Pflanzenbauwissenschaften, Tagungsband 2013, 181 – 184

Futterwert von Silagen in Ökobetrieben: Kontinuierliche Untersuchungen seit 1996

Einleitung

Qualitativ hochwertige Futterkonservate von Ackerfutter und Grünlandaufwuchs sind Grundlagen für eine hohe Grundfutterleistung und eine optimale Milchproduktion. Eine hohe Grundfutterleistung ist positiv für die Tiergesundheit und kann den Einsatz von teurem Kraftfutter reduzieren. Für qualitativ hochwertige Futterkonservate ist der Schnittzeitpunkt entscheidend, da viele Inhaltstoffe von diesem beeinflusst werden.

Fragestellung

- 1. Welchen Futterwert haben Öko-Silagen?
- 2. Welchen Einfluss haben der Schnitttermin und das Erntejahr?
- 3. Gibt es Hinweise auf Verbesserungsmöglichkeiten?

Material und Methoden

Kleegras- und Grünlandsilagen, sowie Getreideganzpflanzensilagen werden von Betrieben, die ebenfalls jährliche produktionstechnische Daten zur Verfügung stellen, zur Analyse eingeschickt.

Parameter

Trockensubstanz, Rohasche, Rohprotein, Rohfaser, ADF, NDF, nXP, RNB, Energiegehalt

Standorte

Fünf Leitbetriebe sowie etwa 100 weitere Praxisbetriebe

Einfluss der Kleegrasnutzung auf die Folgekultur

Einleitung

In Öko-Milchviehbetrieben kann Kleegras als Futter über Schnitt- oder Weideflächen genutzt werden. Da Kleegras in der Fruchtfolge von Öko-Betrieben meist mehrere Jahre angebaut wird, kann sich die Nutzung über die Jahre ändern.

Die Nutzung hat einen Einfluss auf die Artenzusammensetzung im Kleegras. So werden bei Weidenutzung vor allem die ausläuferbildenden und Verbiss tolerierenden Arten Deutsches Weidelgras und Weißklee und bei Schnittnutzung die hochwachsenden Arten wie Rotklee gefördert. Für eine hohe Stickstofffixierung in der Fruchtfolge ist ein hoher Leguminosenanteil entscheidend, weshalb dieser nicht durch die Nutzung und Förderung von Gräsern zu stark zurückgedrängt werden sollte.

Fragestellung

- 1. Welchen Einfluss hat die Nutzung von Kleegras als Weidefläche, Schnittfläche oder bei jährlichem Wechsel von Weide- und Schnittnutzung auf den Leguminosenanteil im Aufwuchs?
- 2. Hat die Nutzung einen Einfluss auf den Bodenwassergehalt?
- 3. Welche Erträge werden im nachfolgenden Getreide bei unterschiedlicher Nutzung des Kleegrases erzielt?

Material und Methoden

In einer im Spätsommer 2022 angesäten Kleegrasfläche werden in 2023 und 2024 folgende Nutzungsvarianten mit vier Wiederholungen getestet:

- zwei Jahre Weidenutzung
- zwei Jahre Schnittnutzung
- 1. Jahr Weidenutzung und 2. Jahr Schnittnutzung
- 1. Jahr Schnittnutzung und 2. Jahr Weidenutzung

Außerdem wird in zwei Wiederholungen die Bodenfeuchte in 10 cm Intervallen bis 80 cm Tiefe gemessen.

Parameter

Festgehalten werden: Artenanteile im Aufwuchs (Frühjahr, Sommer, Herbst), Trockenmasse- und Stickstoffertrag der Schnittflächen, Bodenfeuchte, Kornertrag des nachfolgenden Getreides (2025)

Standort

Leitbetrieb in Rheda-Wiedenbrück

Klee- und Luzernegrasmischungen im Vergleich - Weiterführung der Untersuchungen seit 2014

Einleitung

Grünland, Kleegras und Luzernegras haben in fast allen Öko-Betrieben eine zentrale Bedeutung: Hauptfuttergrundlage, Nährstoffbindung und -mobilisierung, Humuslieferung und Förderung der Bodenfruchtbarkeit.

Aufgrund der zunehmenden die Wetterextreme kann sowohl Mischungszusammensetzung mit der Artenwahl, als auch die Sortenwahl einen entscheidenden Einfluss auf die Produktivität des Kleegrases haben. In mehrjährigen Untersuchungen in Nordrhein-Westfalen wurde gezeigt (1996 bis 2005, 2015 bis 2021), dass im Öko-Landbau die Mischungswahl anders als im konventionellen Landbau ausfallen kann. So brachten unter den Bedingungen des Öko-Landbaus Mischungen mit Welschem Weidelgras im Vergleich zu solchen mit Deutschem Weidelgras nur geringe Mehrerträge bei der Trockenmasse, aber deutliche Mindererträge beim Rohproteinertrag. Die Gründe sind Unterschiede in der Nährstoffverfügbarkeit und damit einhergehende Veränderung der Konkurrenzkraft der Arten. Gerade im Öko-Landbau sind Rohprotein in der Fütterung und Stickstoff in der Fruchtfolge verbreitet begrenzende Faktoren. Zudem ist die Nutzung entscheidend für die Mischungswahl, insbesondere wenn beispielsweise intensive Weide mit reiner Schnittnutzung verglichen wird.

Zielsetzung und Fragestellung

- 1. Vergleich bestehender, empfohlener Mischungen unter betriebsspezifischen Bedingungen des Öko-Landbaus.
- 2. Weiterentwicklung von Mischungen und Anpassung an die unterschiedlichen einzelbetrieblichen Bedingungen des Öko-Landbaus.
- 3. Demonstrationsflächen für die Praxis.

- 4. Aus der Vielzahl der Einflussfaktoren ergeben sich bei der Suche nach geeigneten Mischungen verschiedene Fragen:
 - a. Welche Arten, inklusive Kräuter, passen zusammen?
 - b. Wie entwickeln sich die Mischungen nach Untersaat und Blanksaat?
 - c. Welchen Einfluss haben Witterung und Standortbedingungen, wie Sandboden, Lehmboden, Höhenlage?
 - d. Welche Arten und Sorten eignen sich für welche Nutzung (Schnitt, Weide)?

Material und Methoden

Mischungsauswahl

- a. 1 2 Standardmischungen, die an allen Standorten angelegt werden (Sortenzusammensetzung entsprechend der regionalen Empfehlung):
 - Kleegras: bei Schnittnutzung Kleegras A7, bei Eignung auch Luzernegras A9 plus Rotklee, bei Weidenutzung A7 und A3 + W.
- b. 2 6 weitere Mischungen: Entsprechend den von offizieller Seite regional empfohlenen Mischungen sowie weiteren Vorschlägen aus Beratung und Praxis.

Die Artenwahl erfolgt je nach Nutzung, Standort und Arteneigenschaften. Die ausgewählten Arten stehen in Tab. 1.

Sortenwahl

Alle Mischungen enthalten nur für den jeweiligen Zweck und Standort von offizieller Seite empfohlene Sorten. Von offizieller Seite an anderen Standorten empfohlene Sorten können testweise ebenfalls verwendet werden. Fast durchweg sollen pro Art jeweils 2 empfohlene Sorten verwendet werden, wichtig für Ertrags- und Qualitätssicherung. Bei Weißklee werden, sofern versuchsbedingt nicht anders erforderlich, die blausäure-ärmeren Sorten gewählt.

Anlage

Langstreifen mit 3 Wiederholungen

Tab. 1: Artenwahl für Mischungszusammensetzung nach Ackerfutter und Grünland

Art	Ackerfutter	Grünland
Bastardweidelgras	Χ	
Deutsches Weidelgras	Χ	Χ
Festulolium	Χ	
Knaulgras	Χ	Χ
Glatthafer	X	Χ
Lieschgras	X	X
Luzerne	Χ	
Rohrschwingel	Χ	Χ
Rotklee	Χ	Χ
Rotschwingel		Χ
Schwedenklee	Χ	
Weißklee	Χ	Χ
Welsches Weidelgras	X	
Wiesenrispe		X
Wiesenschwingel	X	Χ

Parameter

Bonituren: Bei Weidenutzung im April und Juli, bei Schnittnutzung vor dem 1. und 3. Schnitt. Auf Schnittflächen werden Ertrag und Futterqualität vor Ort festgehalten.

Standorte

4 Betriebe in unterschiedlichen Regionen

Fortführung der Erhebung zum aktuellen Stand der kuhgebundenen Kälberaufzucht – systematischer Erkenntnisgewinn als Grundlage langjähriger Untersuchungen

Einleitung

Durch die kuhgebundene Kälberaufzucht (KK) kann Rindern im Milchviehbetrieb das ausleben ihres arttypischen Verhaltens als Säugetier ermöglicht werden. Dies hat Effekte auf Stoffwechsel, nachweislich positive Sozialverhalten und eine stressreduzierende Wirkung. Dadurch kann unteranderem Verhaltensstörungen, wie gegenseitiges Besaugen bei Kälbern, reduzierten werden (Meagher et al. 2019, Barth et al. 2022). Gleichzeitig gehen diese positiven Effekte der KK jedoch mit zum Teil erheblichen Kostensteigerungen einher (Ökolandbau 2023). Die Mehrkosten werden häufig weder durch die Milchvermarktung noch durch den Verkauf männlicher oder zuchtuntauglicher Kälber abgedeckt (Alkemper 2022, unveröffentlicht). Im Laufe des Jahres 2023 sind die Mehrkosten durch den längeren Verbleib, der zumeist konventionell vermarkteten männlichen Kälber, auf den Betrieben weiter gestiegen (Spengler Neff et al. 2021, Harms et al. 2022). Dennoch ist das Interesse der Landwirt*Innen an diesem System besonders im Bereich der ökologischen Landwirtschaft ungebrochen groß (Schmidtberg und Ivemeyer 2021).

Vor diesem Hintergrund soll die Arbeit an der Analyse und Weiterentwicklung von Systemen der KK fortgesetzt werden. Mit dem Ziel weitere Beratungsempfehlungen zu erarbeiten, die es den Betrieben ermöglichen mit der KK einhergehende Kosten zu reduzieren. Zudem besteht weiterhin das Bestreben Möglichkeiten zu identifizieren die Langzeitwirkungen der KK erfassbar zu gestalten, da mögliche Auswirkungen der KK auf Erstkalbealter, Nutzungsdauern oder Lebensleistungen erhebliche Auswirkungen auf die monetäre Bewertung des Gesamtsystems im Bezug zu den höheren Aufzuchtkosten haben könnte.

Fragestellungen

 Welche weitergehenden Erkenntnisse k\u00f6nnen durch Auswertung der Befragung aus 2022/2023 unter anderem durch Auswertung der Fragen in Abh\u00e4ngigkeit vom System der KK, der Tierzahl, Mitarbeiterstruktur etc. gewonnen werden?

- Wie k\u00f6nnen Langzeiteffekte der KK erfasst werden? Welche M\u00f6glichkeiten bestehen derzeit Einfl\u00fcsse der Aufzucht auf Erstkalbealter, Nutzungsdauer und Lebensleistung, trotz der in der Erhebung 2023 festgestellten Herausforderungen, insbesondere bez\u00fcglich der noch sehr uneinheitlich durchgef\u00fchrten Milchkontrollen in Betrieben mit KK, zu erfassen? => Erstellung eines Versuchsplanes
- Welche Möglichkeiten bestehen die Milchkontrolle in Betrieben mit KK innerhalb der bestehenden Richtlinien konform und einheitlich durchzuführen und gleichzeitig valide Daten zu erhalten, die die Erhebung von Langzeiteffekten über Jahre hinweg ermöglichen?

Material und Methoden

- Untersuchung auf signifikante Abweichungen zwischen der Verteilung der Daten innerhalb vorgegebener Systemkategorien über die vergleiche aus 2023 hinaus.
- Literaturrecherche:
 - o Richtlinien der Milchkontrolle innerhalb Deutschlands
 - o Nationaler und internationale Publikationen zum Thema Milchkontrolle in Betrieben mit KK
- Befragung von Experten, in unterschiedlichen Regionen, zum Vorgehen bei der Milchkontrolle in Herden mit KK
- Entwicklung eines Versuchsplans zur Erhebung von Langzeiteffekten der KK auf Basis der Erkenntnisse aus der Erhebung 2023

Vorgehensweise

- Datenerhebung durch Befragung von Akteuren der KK, zudem Zusammentragen von Literatur zum Umgang KK und Milchleistungsprüfungen der Landeskontrollverbände in unterschiedlichen Regionen.
- Tiefergehende Analyse der Umfrage aus 2023.

Standorte

Weitere Arbeit an der Erhebung von April 2022 bis Februar 2023 auf 98 Betrieben, davon 20 mit Befragung vor Ort.

Literatur

- Alkemper, T. (2022): Literaturrecherche und Fokusgruppeninterview zum Thema "kuhgebundene Kälberaufzucht". Forschungs- und Entwicklungsprojekt-Bericht, Hochschule Osnabrück. (Unveröffentlicht)
- Barth, K., Bock, A., Breden, A. N., Dwinger, H., Dwinger, S., Gleissner, F., Häußermann, A., Jensen, M., Kubera, J., Kubera, E., Kuckelkorn, J., Lotterhos, A., Miesorski, M., Möller, H., Otterbach, J., Peschel, U., Petersen, J., Tams-Detlefsen, U., Teschmacher, M., Teschmacher, F., Völling, O. (2022): Kuhgebundene Kälberaufzucht in der Milchviehhaltung Leitfaden für die Praxis. Rendsburg, Westerau, Kiel: Bioland, Thünen-Institut für Ökologischen Landbau, Christian-Albrechts-Universität zu Kiel.
- Harms J, Losband B, Lößner P, (2022): Verlängerung der Haltungsdauer männlicher Kälber Tierwohl, Tierschutz, Ökonomie, Arbeitsorganisation unter einen Hut bringen und abnehmende Hand fordern. Gülzow-Pürzen: Landesforschungs¬anstalt für Landwirtschaft und Fischerei Mecklenburg-Vorpommern.
- Meagher, R.K., Beaver, A., Weary, D.M., Von Keyserlingk, M.A.G. (2019): Invited review: A systematic review of the effects of prolonged cow-calf contact on behaviour, welfare, and productivity. Journal of Dairy Science Volume 102 Issue 7, 5765-5783. https://doi.org/10.3168/jds.2018-15603.
- Ökolandbau (2022): Produkte aus Kuhgebundener Kälberaufzucht. https://www.oekolandbau.de/handel/mar-keting/vertrieb/warenkunde/produkte-aus-kuhgebundener-kaelberaufzucht/ (Zugriff 17.01.2023).
- Schmidtberger. R, und Ivemeyer S, (2021): Trennen und Absetzen in der kuhgebundenen Kälberaufzucht. Biotopp Fachzeitschrift für Ökologische Landwirtschaft, Mai 2021, 33-35. https://org-prints.org/id/e-print/42549/.
- Schneider, C., Bieber, A., Spengler Neff, A., Ivemeyer, S. (2021): Trennen und Absetzen von Kälbern in der kuhgebundenen Aufzucht. https://orgprints.org/id/eprint/42549/8/CORE_Organic_practice%20abstract_Pro YoungStock_DE.pdf (Zugriff am 09.05.2023).